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Abstract

For any compact surface Σg,b of genus g with b boundary components(g≥ 2,b≥ 1), there is
a representation for its Torelli group T (Σg,b), named the Johnson homomorphism τ : T (Σg,b)→
Hom(H1(Σg,b;Z),∧2H1(Σg,b;Z)). We compute out the images of Johnson homomorphism for
all compact surfaces Σg,b using the matrix form. Especially for Σg,2, the image is some form of
∧3H1(Σg,2;Z). In this process, we mainly use the fact that its Torelli group T (Σg,b) is gener-
ated by Dehn twists about separating curves and bounding pair maps. Besides, we calculate the
image of Johnson homomorphism for one special noncompact surface of infinite type.

1 Introduction

Let Σg,b be a connected, oriented surface of genus g with b boundary components (g≥ 2,b≥ 1); the
mapping class group Mod(Σg,b) is the group of isotopy classes of orientation-preserving homeomor-
phisms of Σg,b which fix the boundary pointwise. Mod(Σg,b) has a natural representation by acting
on its first homology group with Z coefficients: Ψ : Mod(Σg,b)→Aut(H1(Σg,b;Z)). For b= 1, since
the action of Mod(Σg,b) on H1(Σg,b;Z) preserves the nondegenerate algebraic intersection form, this
representation becomes Ψ : Mod(Σg,1)→ Sp(2g,Z), which is well-known to be surjective. Its ker-
nel is the Torelli group for Σg,1 denoted as T (Σg,1). In this article, we generalized the definition
of the Torelli group from b = 1 to every postive integer b in a natural way. The Torelli group for
Σg,b(g≥ 2,b≥ 1) is defined as the kernel of Ψ. Notice that this definition of Torelli group is differ-
ent from the definition of the Torelli group given by Putman in [9]. In Putman’s article [9], he proved
that there is no single definition of the Torelli group that is both funtorial and closed under restric-
tion, so he actually defined the Torelli group T (Σ,P) for a partitioned surface (Σ,P), where P is a
partition of the boundary components that restricts how Σ embeds into a closed surface. Although
his definition is funtorial, elements in T (Σ,P) do not act trivially on H1(Σg,b;Z), but act trivially
on HP

1 (Σ) constructed in section 3 of [9]. One important question concerning the Torelli group is
finding its generators. Birman and Powell proved that T (Σg,0) is generated by an infinite collection
of all Dehn twists about separating twists and all bounding pair maps [1],[8]; Johnson showed that,
for g ≥ 3, a finite number of bounding pair maps can generate T (Σg,0) [5]. For genaral compact
surfaces, Putman proved in [9] that T (Σ,P) is generated by Dehn twists about P-separating curves
and P-bounding pair maps, while it does not help to get the generators of T (Σg,b) defined in this
article. Still, we can show that T (Σg,b) is generated by all Dehn twists about separating curves
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and bounding pair maps by induction on the genus g, and we give a specific proof due to Justin
Malestein in section 2.

The Johnson homomorphism is an important contribution of Johnson to our understanding of
the Torelli group. Basically, it’s a homomorphism from the Torelli group to a finitely generated
abelian group, which is of the form τ : T (Σg,1)→ Hom(H1(Σg,1;Z),∧2H1(Σg,1;Z)). The original
definition for Σg,1 first came from Johnson [4]. The problem of interest is the computation of the
abelianization of T (Σg,1). In [4], he aimed to construct an abelian quotient of T (Σg,1) free of rank(

3
2g

)
, by examing its action on a certain nilpotent quetient of π1(Σg,a), which is given by τ . He

showed that ∧3H1(Σg,1) has a natural way of embedding in Hom(H1(Σg,1;Z),∧2H1(Σg,1;Z)) and
proved that the image of τ is precisely ∧3H1(Σg,1). Besides, he applied Johnson homomorphism to
two problems from Birman and Chillingworth. One is the subgroup of T (Σg,1) which is generated
by Dehn twists on bounding simple closed curves does not have finite index in T (Σg,1). The other
is if an element f in T (Σg,1) preserves winding numbers of all curves on Σg,1, it’s not necessary
that f belongs to the subgroup of T (Σg,1) which is generated by Dehn twists on bounding simple
closed curves. Returning to the original problem about the abelianization of T (Σg,1), Johnson also
showed that for g ≥ 3, ∧3H1(Σg,1) can’t be the abelianization. For surfaces with more boundary
components, we can similarly define the Johnson homomorphism as [4], and what’s its image like
is of our concern.

The main purpose of this paper is computing the image of the Johnson homomorphism for
general compact surfaces Σg,b(g≥ 2,b≥ 1). For b= 1, Johnson gave a full description of this image
as ∧3H1(Σg,1;Z). This paper focuses on the case for b ≥ 2. To compute this, we use the fact that
the Torelli group for Σg,b(g≥ 2,b≥ 1) is generated by the Dehn twists about nonseparating curves
and bounding pair maps which can be proved by induction and the well-known fact that T (Σg,0) is
generated by the Dehn twists about nonseparating curves and bounding pair maps due to Johnson.
We give a proof of this theorem in this paper which is due to Justin Malestein. Thus by computing
the images of the Dehn twists about nonseparating curves and bounding pair maps, along with the
equivariance of the Johnson homomorphism, the whole image of the Johnson homomorphism can
be decided. An explicit description in the matrix form is refered to Theorem 4.4 and Theorem 5.1
for b = 2 and b≥ 3 respectively in this paper. For b = 2, the image has a more intrinsic description
as the image of ∧3H1(Σg,2;Z) refered to Theorem 4.5. Other than that, we are also interested in the
image of the Johnson homomorphism for surfaces of infinite-type, whose fundamental groups are
not finitely generated, and we compute a simplest one whose surface has one boundary component,
infinite surface and one and only one ends accumulated by genus.

The outline of this paper is as follows. We give an definition of the Torelli groups for compact
surfaces in section 2 and show that the Torelli group we defined is generated by all Dehn twists about
separating curves and all bounding pair maps; in section 3, we give an introduction of the definition
of the Johnson homomorphism and its naturality; in section 4 and 5, we respectively compute the
image of the Johonson homomorphism for Σg,2 and Σg,b(b ≥ 3); at last, in section 6, we compute
the image for one special surface of infinite-type.

Acknowledgments. I honestly wish to thank my advisor Professor Justin Malestein for many
helpful discussions and directions in this summer. I would also like to thank Professor Yi Liu,
who helped me learn a lot about mapping class groups in my undergraduate years. The author is
partially supported by the elite undergraduate training program of School of Mathematical Sciences
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in Peking University.

2 Torelli Groups for Compact Surfaces

The action of Mod(Σg,b) on H1(Σg,b;Z) induces a representation: Ψ : Mod(Σg,b)→Aut(H1(Σg,b;Z)).
The Torelli group for Σg,b is defined as T (Σg,b) := Ker(Ψ).
First we discuss some elements in T (Σg,b):

• Dehn twists about separating curves

Given any simple closed separating curve α in Σg,b, there exists a basis {α1,β1, · · · ,αg,βg,γ1,γ2,
· · · ,γb−1} of H1(Σg,b;Z) where all αi,βi,γi are represented by oriented simple closed curves
disjoint from α , and since Tα fixes all these curves, it fixes their corresponding homology
classes and hence lies in T (Σg,b). Or we can apply the following lemma, using the fact that
α have zero algebraic intersection number with all other curves.

• Bounding pair maps

A bounding pair is a pair of disjoint, homologous, nonisotopic, nonseparating simple closed
curves α,β . And we require that the union of α and β separates the surface into two con-
nected components. A bounding pair map refers to TαT−1

β
where α and β form a bounding

pair.

To show that TαT−1
β

lies in T (Σg,b) for arbitrary {g,b}, we need the following lemma.

Lemma 2.1. Let α and β be the isotopy classes of two oriented simple closed curves respectively
in Σg,b. Then for any integer k ≥ 0, we have Ψ(T k

β
)([α]) = [α]+ k · î(α,β )[β ], where î(α,β ) is the

algebraic intersection number.

Proof of lemma: The lemma is a slight extension of Proposition 6.3 on [2] and the proof is similar.
First for the case where β is separating, by the change of coordinates principle there is a geo-

metric basis {α1,β1, · · · ,αg,βg,γ1,γ2, · · · ,γb−1} such that each curve is disjoint from β . The lemma
follows immediately.

Then assuming that β is nonseparating, by the change of coordinates principle there is a geo-
metric basis {α1,β1, · · · ,αg,βg,γ1,γ2, · · · ,γb−1} such that β = β1. Here i(αi,β j) = δi j, i(αi,α j) =
i(αi,γ j) = i(βi,β j) = i(βi,γ j) = i(γi,γ j) = 0, where i(α,β ) is the geometric intersection number
between curve α and curve β . In this way we have

Ψ(T k
β
)[c] = [T k

β
(c)] =

{
[c], c ∈ {β1, · · · ,αg,βg,γ1,γ2, · · · ,γb−1};
[α1]+ k · [β ], c = α1.

Now for arbitrary α , the α1-coefficient of [α] is î(α,β ). By the linearity of Ψ(T k
β
), the lemma

follows.

We can see the above lemma that for a bounding pair α,β , the image of Tα and Tβ under Ψ are
equal, thus TαT−1

β
is in T (Σg,b).

Further we have the fact that Dehn twists about separating curves and bounding pair maps
generates T (Σg,b), which can be proved by induction from the well-known fact that the Torelli
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group for Σg,1 is generated by Dehn twists about separating curves and bounding pair maps. The
proof is due to Justin Malestein.

Theorem 2.2 (Malestein). For g≥ 2,b≥ 1,T (Σg,b) is generated by Dehn twists about separating
curves and bounding pair maps.

First we need the following lemma which is Lemma A.1 in [9] and Fact 4.7 in [2]. The definition of
point-pushing map can be found on Section 4.2.1 in [2]. Notice that in the following we denote by
Σg,b,n a connected orientable surface of genus g with b boundary components and n punctures.Then
Σg,b = Σg,b,0.

Lemma 2.3 (Putman). For g≥ 2,b≥ 2,assume that the base point x is in the interior of π1(Σg,b−1,0).
Then [π1(Σg,b−1,0,x),π1(Σg,b−1,0,x)] is generated by [γ1,γ2], where γ1,γ2 ∈ π1(Σg,b−1,0,x) are simple
closed curves so that γ1

⋂
γ2 = {x} and so that a regular neighborhood of γ1

⋃
γ2 is homeomorphic

to a one-holed torus.

Fact 2.4 (Farb&Margalit). Let α be a simple loop which represents an element in π1(Σg,b−1,0). Let
Push be the point-pushing map: Push : π1(Σg,b−1,0,x)→Mod(Σg,b−1,1). Then Push([α]) = Tβ T−1

γ ,
where β and γ are the isotopy classes of the simple closed curves in Σg,b−1,1 obtained by pushing α

off itself to the left and right respectively.

Proof of theorem: By capping a boundary component β of Σg,b,0 with a once-marked disk, we get
an exact sequence(Proposition 3.19 in [2]):

1→
〈
Tβ

〉
→Mod(Σg,b,0)→Mod(Σg,b−1,1)→ 1 (1)

Since β is separating, Tβ is in T (Σg,b,0), so the above exact sequence descends to

1→
〈
Tβ

〉
→T (Σg,b,0)→T (Σg,b−1,1)→ 1 (2)

We also have the Birman exact sequence

1→ π1(Σg,b−1,0, x) Push−→Mod(Σg,b−1,1)
Forget−→ Mod(Σg,b−1,0)→ 1 (3)

where x is a marked point and the forgetful map Forget : Mod(Σg,b−1,1)
Forget−→ Mod(Σg,b−1,0) is

realized by forgetting the point x is marked.
The Birman exact sequence descends to

1→ K Push−→T (Σg,b−1,1)
Forget−→ T (Σg,b−1,0)→ 1 (4)

where K = π1(Σg,b−1,0,x)
⋂

Push−1(T (Σg,b−1,1)).

We explain why the map T (Σg,b−1,1)
Forget−→ T (Σg,b−1,0) is surjective. By induction, T (Σg,b−1,0)

is generated by Dehn twists about separating curves and bounding pair maps. First let α be a
separating curve in Σg,b−1,0, so Tα ∈T (Σg,b−1,0). If the marked point x is disjoint with the curve α ,
then naturally α can be embedded in Σg,b−1,1 as α̃ which is also separating, so Tα̃ ∈T (Σg,b−1,1) and
Forget(Tα̃) = Tα ; the other case is that x is a point in α , but we can modify α by isotopy so that it is

disjoint with x, then following the same procedure we know that Tα is an image of T (Σg,b−1,1)
Forget−→

T (Σg,b−1,0). Next let {β ,γ} be a bounding pair in Σg,b−1,0, then Tβ T−1
γ ∈ T (Σg,b−1,0). No matter
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the reletive position of x and {β ,γ}, we can always modify β and γ by isotopy such that new {β ,γ}
separates Σg,b−1,0 into two surfaces, one of which have only β and γ as its boundary components
and do not contain the point x. We can still embed β and γ in Σg,b−1,1 as β̃ and γ̃ so that {β̃ , γ̃}
forms a bounding pair in Σg,b−1,1. Thus T

β̃
T−1

γ̃
∈ T (Σg,b−1,1) and Forget(T

β̃
T−1

γ̃
) = Tβ T−1

γ . In
conclusion, each of Dehn twists about separating curves and bounding pair maps in Σg,b−1,0 is an
image of a Dehn twist about a separating curve or a bounding pair map in Σg,b−1,0, so we prove the
surjectivety.

Next, we try to find out what K is exactly. Firstly, Proposition 6.13 in [1] tells us for b = 1, K =
π1(Σg,0,0); for b≥ 2, we claim that K is generated by {separating simple closed curves in Σg,b−1,0
based at x} and we prove our claim as follows.

First, according to Fact 2.4, it’s easy to see that {separating simple closed curves in Σg,b−1,0
based at x} ⊂ K since we know Dehn twists about separating curves lie in the Torelli group.

Take {α1,β1, · · · ,αg,βg,γ1,γ2, · · · ,γb−2} as a basis of Γ = π1(Σg,b−1,0, x) where αi, βi are non-
separating loops with i(αi,β j) = δi j, i(αi,α j) = i(βi,β j) = 0, and each of γ1, · · · ,γb−2 is a loop
around one boundary component. For simple closed curves µ1 and µ2 such that µ1

⋂
µ2 = {x}

and the regular neighborhood of µ1
⋃

µ2 is a one-holed torus, so [µ1,µ2] is a separating curve
around the boundary of this one-holed torus. By Fact 2.4 Push([µ1,µ2]) is a pair of Dehn twists
about two separating curves. Thus Push([µ1,µ2]) ∈ T (Σg,b−1,1) by lemma 2.3. So we know
[π1(Σg,b−1,0, x),π1(Σg,b−1,0,x)] ⊂ K. Since the curves obtained by pushing γi(1 ≤ i ≤ b− 2) off
itself to the left and right are still separating, we have {γ1,γ2, · · · ,γb−2} ⊂ K. Thus if we denote as
Γ′ the group generated by [π1(Σg,b−1,0, x),π1(Σg,b−1,0, x)] and {γ1,γ2, · · · ,γb−2}, we get Γ′ ⊂ K.

Next, to prove K⊂Γ′, instead we can show that π1(Σg,b−1,0, x)\Γ′⊂ π1(Σg,b−1,0, x)\K. Let S be
the new surface homeomorphic to Σg,0,0 obtained by capping all boundary components of Σg,b−1,0,
then H1(S) = Γ/Γ′. For any α in π1(Σg,b−1,0, x)\Γ′, Suppose [α] is the corresponding element in
Γ/Γ′ of α , then there exists a primitive element [δ ] ∈ Γ/Γ′ and an integer m such that [α] = m · [δ ].
Due to Prop. 6.2 in [1], [δ ] can be represented by an oriented simple closed curve δ in S based at
x. Additionally δ is nonseparating since [δ ] is nontrivial in H1(S) and S is closed. Take δ̃ as the
preimage of δ under the map π1(Σg,b−1,0, x)→ π1(S,x) which is induced by capping all boundary
components of π1(Σg,b−1,0, x). δ̃ is nonseparating as δ is. Then α = δ̃ m ·λ for some λ ∈ Γ′, so
if α ∈ K we will have δ̃ ∈ K, which is, however, not the truth. Since δ̃ is a nonseparating simple
closed curve in Σg,b,0, there exists some other nonseparating simple closed curve η in Σg,b,1 which
intersects with it exactly once. Suppose a and b are the curves obtained by pushing δ̃ off itself to
the left and right, then Ψ((Push(δ̃ )[η ] = (Ψ(Push(δ̃ ))[η ]) = (Ψ(TaT−1

b )[η ]) = [η ]+[a]− [b]. With
b ≥ 2, [a] 6= [b] in H1(Σg,b,1) since {a,b} separates Σg,b,1 into one surface homeomorphic to Σ0,2,1
and the other surface homeomorphic to Σg−1,b+2,0. It turns out that Push(δ̃ ) /∈T (Σg,b,1). Hence δ m

is not in K, so neither is α . So we have shown that everything not in Γ] is not in K, so K ⊂ Γ′.
Now we have K = Γ′. While by definition we know that Γ′ is generated by separating simple

closed curves in π1(Σg,b−1,0) based at x, our claim is proven.
Now back to our main theorem, we prove it by induction on the number of boundary components

b.
For b = 1, the result for T (Σg,1,0) comes from (2),(4) where b = 1 and elements in Push(π1

(Σg,0,0,x)) are all bounding pair maps, together with the fact that T (Σg,0,0) is generated by Dehn
twists about separating curves and bounding pair maps.

For b ≥ 2, assuming the result for T (Σg,b−1) is true, in light of two exact sequences (2) and
(4), and knowing that Push(K) consists of products of Dehn twists about separating curves, we can
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deduce that T (Σg,b,0) is generated by Dehn twists about separating curves and bounding pair maps.
So it’s done.

3 Johnson Homomorphism for Compact Surfaces

In this section, we give a general definition of Johnson Homomorphism for Σg,b and explain its
naturality.
First we have a lower central series: Γ = Γ1 = π1(Σg,b),Γi = [Γ,Γi−1] f or i ≥ 2. For convenience,
let H = Γ1/Γ2, N = Γ2/Γ3, E = Γ1/Γ3. Then there is an exact sequence:

1→ N→ E→ H→ 1 (5)

The following result is a generalization of Lemma2A, Lemma2B and Lemma2C in [4] from Σg,1 to
Σg,b, and the proof is basically the same.

Proposition 3.1 (Johnson). Let f ∈T (Σg,b), f induces a well-defined map of sets:

t f : E→ N

x 7→ f∗(x)x−1

Furthermore, t f induces a well-defined homomorphism τ f : H → N. Then the Johnson homomor-
phism τ : T (Σg,b)→ Hom(H,N) defined as τ( f ) = τ f is a homomorphism.

Further, we have a natural isomorphism according to Lemma1B in [4]

N ∼= ∧2H

[a,b]↔ a∧b

So the Johnson homomorphism can be viewed as a map τ : T (Σg,b)→ Hom(H,∧2H). In the
following, we just regard N and ∧2H as equal.
Naturality. Next, we treat the naturality of Johnson homomorphism carefully, by which we mean
it’s consistent with the actions of Mod(Σg,b) on both sides.

To be exact, given f ∈ T (Σg,b)and τ f ∈ Hom(H,N), g ∈ Mod(Σg,b) acts on f and τ f in the
following way:

Let g act on f , we get g. f = g f g−1;
Let g act on τ f , we get (g.τ f )(x) = g∗(τ f (g−1

∗ (x))) for any x ∈ H.
Then we only need to check that τg f g−1 = g∗(τ f ), see [6] or [4].

4 The Image of Johnson Homomorphism for Σg,2

First we make it clear how to compute the image of Johnson homomorphism for Σg,b. Then we
follow this way to compute the image for Σg,2 and Σg,b for any b≥ 3 in this section and next section,
repectively.
By Theorem 2.2, we know that τ(T (Σg,b)) is spanned by {τ(Tα),τ(Tβ T−1

γ )} ,where α ranges over
all an arbitrary separating simple closed curves in Σg,b, and {β ,γ} ranges over all bounding pairs in
Σg,b. By the change of coordinates principle, we only need to calculate the images of some particular
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Dehn twists about separating curves and bounding pair maps due to the fact that f Tα f−1 = Tf (α)

and f Tβ T−1
γ f−1 = f Tβ f−1 f T−1

γ f−1 = Tf (β )T
−1
f (γ).

First of all, for b = 1, let H = H1(Σg,1). The case b = 1 special since we have a canonical iso-
morphism H∗ ∼= H induced by the nondegenerate bilinear quadratic form which is the algebraic
intersection pairing. However, notice that for Σg,b (b ≥ 2) we don’t have the natural isomorphism
of H1(Σg,b) to its dual since the algebraic intersection pairing is degenerate. Thus especially in the
case of b = 1 we have: Hom(H,∧2H) ∼= H∗⊗∧2H ∼= H ⊗∧2H. And ∧3H embeds in H ⊗∧2H
naturally by mapping a∧b∧ c to a⊗ (b∧ c)+b⊗ (c∧a)+ c⊗ (a∧b). And the image of Johnson
homomorphism in this case has been thoroughly discovered by the following proposition 6.16 on
[1].

Proposition 4.1 (Johnson). For g≥ 2, τ(T (Σg,1)) = ∧3H1(Σg,1).

Next, we try to find the total image for b = 2. First, we calculate the images of some particular Dehn
twists about separating curves and bounding pair maps.
(a)Dehn twists about separating curves

Separating curves in Σg,2 can be classified into two kinds: a separating curve α that separates
Σg,2 into a surface homeomorphic to Σk,1(1≤ k≤ g) and a surface homeomorphic to Σg−k,3; another
kind is a separating curve β that separates Σg,2 into a surface homeomorphic to Σk,2(1≤ k≤ g) and
a surface homeomorphic to Σg−k,2(See figure 1 below).

... ...

kgenus

β
α

δ
η

x

Figure 1: separating curves

We can directly compute their image under Johnson homomorphism. First we choose a base
point x in one boundary component of Σg,2, and take a basis {α1,β1, · · · ,αg,βg,γ1} of π1(Σg,2, x)
(See Figure 2 below).

Then for the first kind we have:

τ(Tα)([αi]) = Tα(αi)α
−1
i = δαiδ

−1
α
−1
i = [δ , αi],1≤ i≤ k

τ(Tα)([βi]) = Tα(βi)β
−1
i = δβiδ

−1
β
−1
i = [δ , βi],1≤ i≤ k

τ(Tα)([c]) = Tα(c)c−1 = cc−1 = 1, if c ∈ {αk+1,βk+1, · · · ,αg,βg,γ1}

where δ is an element in Γ1 shown in Figure 1. We know that δ =∏
k
i=1[αi, βi]∈ Γ2, so [δ , αi]∈ Γ3,

which means τ(Tα)([αi]) = [δ , αi] = 1 ∈ N = Γ2/Γ3. The same argument applies to τ(Tα)(βi),so
in the end we get τ(Tα) = 0, where 0 means a constant map.
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.    .    .  

x

α 1

β1

γ1

βg

α g

Figure 2: basis of π1(Σg,2)

For the second kind, let fk = Tβ where β is a separating curve which separates Σg,2 into Σk,2 and
Σg−k,2. We have:

τ( fk)([αi]) = Tβ (αi)α
−1
i = ηαiη

−1
α
−1
i = [η , αi],1≤ i≤ k

τ( fk)([βi]) = Tβ (βi)β
−1
i = ηβiη

−1
β
−1
i = [η , βi],1≤ i≤ k

τ( fk)([γ1]) = Tβ (γ1)γ
−1
1 = ηγ1η

−1
γ
−1
1 = [η , γ1]

τ( fk)([c]) = Tβ (c)c
−1 = cc−1 = 1, if c ∈ {αk+1,βk+1, · · · ,αg,βg}

where η is an element in Γ1 shown in Figure 1. We have that [η ] = [γ1] ∈ Γ1/Γ2, so it becomes:

τ( fk)([αi]) = [η , αi] = [γ1, αi]↔ [γ1]∧ [αi],1≤ i≤ k

τ( fk)([βi]) = [η , βi] = [γ1, βi]↔ [γ1]∧ [βi],1≤ i≤ k

τ( fk)([c]) = 1↔ 0, if c ∈ {αk+1,βk+1, · · · ,αg,βg,γ1}

(b)Bounding pair maps
Due to the definition of bounding pair maps, any bounding pair α,β must separate Σg,2 into a

surface homeomorphic to Σk,2(1≤ k≤ g−1) and a surface homeomorphic to Σg−k−1,4 shown in the
figure below.

. . . . . .
α

β

 genus k+1

Figure 3: a bounding pair in Σg,2

Let gk = TαT−1
β

, and notice that the process of computing the image of gk under τ is exactly the
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same with that in Σg,1, so be obtain:

τ(gk)([αi]) = [βk+1,αi]↔ [βk+1]∧ [αi],1≤ i≤ k

τ(gk)([βi]) = [βk+1,βi]↔ [βk+1]∧ [βi],1≤ i≤ k

τ(gk)([αk+1]) =
k

∏
i=1

[αi,βi]↔
k

∑
i=1

[αi]∧ [βi]

τ(gk)([c]) = 1↔ 0, i f c ∈ {βk+1,αk+2,βk+2, · · · ,αg,βg,γ1}

Representation of the image in matrix form. Having taken the bases of H = H1(Σg,2) and ∧2H,
we could describe any element in Hom(H,∧2H) in matrix form like this (For convenience, we
denote c1 = α1,c2 = α2, · · · ,cg = αg,cg+1 = β1, · · · ,c2g = βg):



[γ1] [c1] . . . [cg] [cg+1] . . . [c2g]

[γ1]∧ [c1] ∗ ∗ ∗ ∗ ∗ ∗ ∗
... ∗ ∗ ∗ ∗ ∗ ∗ ∗
[γ1]∧ [cg] ∗ ∗ ∗ ∗ ∗ ∗ ∗
[γ1]∧ [cg+1] ∗ ∗ ∗ ∗ ∗ ∗ ∗
... ∗ ∗ ∗ ∗ ∗ ∗ ∗
[γ1]∧ [c2g] ∗ ∗ ∗ ∗ ∗ ∗ ∗
[ci]∧ [c j] ∗ ∗ ∗ ∗ ∗ ∗ ∗


g(2g+1)×(2g+1)

And the results we have calculated in (a) give us only the following nontrivial matrices corre-
sponding to fk ∈Mod(Σg,2): ( 02g×1 Bk

0g(2g−1)×1 0g(2g−1)×2g

)
(6)

where

Bk =


Ik

0g−k
Ik

0g−k

 (7)

Before we do further computation, we need an important lemma below.

Lemma 4.2. We take a standard basis {[α1], · · · , [αg], [β1], · · · , [βg], [γ1], [γ2], · · · , [γb−1]} of
H1(Σg,b;Z) shown in Figure 4 below. Then with respect to this basis, the image of Ψ : Mod(Σg,b)→
Aut(H1(Σg,b;Z)) in matrix form is:

{P =


P̃2g×2g 0

v1
...

vb−1

Ib−1

 |∀P̃ ∈ Sp(2g;Z),∀vi ∈M1×2g(Z),1≤ i≤ b−1}

In fact, we can describe the result independent of the choice of a basis. The image of Mod(Σg,b) can
be characterized as those automorphisms of H1(Σg,b;Z) which:

9



.    .    .  

x

α 1

β1
βg

α g
...

γ
b-1

γ
1

Figure 4: basis of π1(Σg,b)

• act as identity on the subspace of H1(Σg,b;Z) spanned by [γ1], [γ2], · · · , [γb−1]

• preserve the algebraic intersection form

Proof of lemma: To prove this lemma, we need to prove two things. One is to prove every element
in the image of Ψ is of the form we want after choosing a basis of H1(Σg,b;Z). The other is to prove
every element in Aut(H1(Σg,b;Z)) in this form is in the image of Ψ.

We first show that every element in the image of Ψ is of this form. On the one hand, since
Mod(Σg,b) fixes the boundary components pointwise, it doesn’t change the homology class of
γ1,γ2, · · · ,γb−1. On the other hand, the image of Ψ : Mod(Σg,1)→ Aut(H1(Σg,1;Z)) is Sp(2g;Z),
and for any k, Mod(Σg,k) maps surjectively to Mod(Σg,k−1), so by induction we know that P̃ must
be symplectic.

What’s left to prove is that every element in Aut(H1(Σg,b;Z)) in this form is in the image of Ψ.
First, we oberserve the images of some simple Dehn twists and what their matrices are like.

For 1 ≤ k ≤ b− 1 and 1 ≤ i ≤ g, since [βi]− [γk] and −[αi]− [γk] are primitive in H1(Σg,b;Z),
there must be two simple closed curves in Σg,b representing the homology classes [βi]− [γk] and
−[αi]− [γk] respectively. Donote them as δ and µ , and we may just take two curves as in Figure 5.
Then we have:

. . . . . .

  genus i 

δ μ .

..

..

.

the (k+1)-th 

boundary component

Figure 5: δ and µ in Σg,b
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Ψ(TβiT
−1

δ
)([αi]) = [TβiT

−1
δ

(αi)] = [αi]− [δ ]+ [βi] = [αi]+ [γk]

Ψ(TβiT
−1

δ
)([c]) = [c], if c ∈ {α1, · · · ,αi−1,αi+1, · · · ,αg,β1, · · · ,βg,γ1, · · · ,γb−1}

Ψ(T−1
αi

T−1
µ )([βi]) = [T−1

αi
T−1

µ (βi)] = [βi]− [µ]− [αi] = [βi]+ [γk]

Ψ(T−1
βi

T−1
µ )([c]) = [c], if c ∈ {α1, · · · ,αg,β1, · · · ,βi−1,βi+1, · · · ,βg,γ1, · · · ,γb−1}

The matrix for Ψ(TβiT
−1

δ
) is determined by P̃ = I2g and v1 = · · ·= vk−1 = vk+1 = · · ·= vb−1 =

0,vk = ei where ei = (0, · · · ,1, · · · ,0) which is the i-th unit vector in Z2g. The matrix for Ψ(T−1
αi

T−1
µ )

is determined by P̃ = I2g and v1 = · · · = vk−1 = vk+1 = · · · = vb−1 = 0,vk = eg+i. Since Ψ is a
homomorphism, matrices we get by multiplying what we already got many times should still lie in
the image. Thus for any {v1, · · · ,vb−1}, there exists an element in the image whose matrix is:

I2g 0
v1
...

vb−1

Ib−1


Furthermore, since for any 2 ≤ k ≤ b, H1(Σg,k−1) = H1(Σg,k)/〈γk−1〉 and Mod(Σg,k) maps sur-

jectively to Mod(Σg,k−1) and for b = 1 the image of Ψ is precisely Sp(2g;Z), we know that for any
P̃ ∈ Sp(2g;Z), there exists an element in the image of Ψ whose correponding matrix restricted in
the subspace spanned by {[α1], · · · , [αg], [β1], · · · , [βg]} is P̃, which is like:

P̃ 0
w1
...

wb−1

Ib−1


Then finally the result comes from:

P̃ 0
v1
...

vb−1

Ik

=


P̃ 0
w1
...

wb−1

Ik




I2g 0
v1−w1

...
vb−1−wb−1

Ik


So far we have proven that every element in this form is in the image of Ψ. Combining two

sides, we have proven the lemma.

Then we can continue our computation by letting ϕ ∈Mod(Σg,2) act on fk ∈Mod(Σg,2) whose
corresponding matrix is (6). Supposing the matrix of ϕ is P, we will get the inverse of P:

P−1 =

(
P̃−1 0
w1 1

)
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where w1 =−v1 · P̃−1. If we denote Ai, j as the item in the i-th row and the j-th column of any matrix
A, and denote vi as the i-th coordinate of a vector v, we can compute out:

ϕ∗( fk)([ci]) = ϕ∗( fk(ϕ
−1
∗ ([ci])))

= ϕ∗( fk(
2g

∑
j=1

(P̃−1) j,i[c j]+wi
1[γ1]))

=
2g

∑
j=1

(P̃−1) j,iϕ∗( fk([c j]))

=
2g

∑
j=1

(P̃−1) j,iϕ∗(
2g

∑
l=1

(Bk)l, j[γ1]∧ [cl])

=
2g

∑
j=1

2g

∑
l=1

(P̃−1) j,i(Bk)l, jϕ∗([γ1])∧ϕi([cl])

=
2g

∑
j=1

2g

∑
l=1

2g

∑
t=1

(P̃−1) j,i(Bk)l, jP̃t,l[γ1]∧ [ct ]

ϕ∗( fk)([γ1]) = ϕ∗( fk(ϕ
−1
∗ ([γ1]))) = ϕ∗( fk([γ1])) = 0

Thus the matrix form of ϕ∗( fk) is like: (
0 P̃BkP̃−1

0 0

)
Proposition 4.3. If Bk is a matrix in the form of (7), we have:

spanZ{P̃BkP̃−1|1≤ k ≤ g,∀P̃ ∈ Sp(2g;Z)}

={
(

A B
C At

)
|∀A,B,C ∈Mg×g(Z),Bt =−B,Ct =−C}

Proof of proposition: Let Ei, j be the fundamental matrix whose (i, j) entry is 1 and other entries are
0. First we can tranform our target into

spanZ{P̃
(

Ek,k 0
0 Ek,k

)
P̃−1|1≤ k ≤ g,∀P̃ ∈ Sp(2g;Z)}

For any P̃ ∈ Sp(2g;Z), it can be written as:

P̃ =

(
X Y
Z W

)
And symplectic matrix P̃ satisfies P̃tJP̃ = J, where

J =

(
0 Ig

−Ig 0

)
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so that:

P̃−1 = J−1P̃J =

(
W t −Y t

−Zt X t

)
On the one hand, we can show the left-side set is contained in the right-side set:

P̃
(

Ek,k 0
0 Ek,k

)
P̃−1 =

(
X Y
Z W

)(
Ek,k 0

0 Ek,k

)(
W t −Y t

−Zt X t

)
=

(
XEk,kW t −Y Tk,kZt −XEk,kY t +Y Ek,kX t

ZEk,kW t −WEk,kZt WEk,kX t −ZEk,kY t

)
where

(XEk,kW t −Y Tk,kZt)t =WEk,kX t −ZEk,kY t

(−XEk,kY t +Y Ek,kX t)t =−(−XEk,kY t +Y Ek,kX t)

(ZEk,kW t −WEk,kZt)t =−(ZEk,kW t −WEk,kZt)

On the other hand, to show the right-side set is contained in the left-side set, firstly we look at some
special elements in the right-side set. We know that the following matrices are in Sp(2g;Z) :(

I +Ei, j 0
0 I−E j,i

)
(i 6= j);

(
I Y
0 I

)
(Y t = Y );

(
I 0
Z I

)
(Zt = Z)

Then we can compute for the first kind:(
I +Ei, j 0

0 I−E j,i

)(
Ek,k 0

0 Ek,k

)(
I +Ei, j 0

0 I−E j,i

)−1

=

(
I +Ei, j 0

0 I−E j,i

)(
Ek,k 0

0 Ek,k

)(
I−Ei, j 0

0 I +E j,i

)
=

(
(I +Ei, j)Ek,k(I−Ei, j) 0

0 (I−E j,i)Ek,k(I +E j,i)

)
=

(
Ek,k−δ i

kEk, j +δ
j

k Ei, j 0
0 Ek,k−δ i

kE j,i +δ
j

k Ek,i

)

Especially, when k = j, the above matrix becomes(
Ei, j 0
0 E j,i

)
which will actually span any matrix like: (

A 0
0 At

)
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The result of the second kind looks like:(
I Y
0 I

)(
Ek,k 0

0 Ek,k

)(
I Y
0 I

)−1

=

(
I Y
0 I

)(
Ek,k 0

0 Ek,k

)(
I −Y
0 I

)
=

(
Ek,k ∑

k−1
i=1 Yi,kEi,k−∑

k−1
j=1 Yk, jEk, j

0 Ek,k

)
=

(
Ek,k ∑

k−1
i=1 Yi,kEi,k−∑

k−1
j=1 Yj,kEk, j

0 Ek,k

)
which minus Bk will span any matrix in the form of:(

0 B
0 0

)
(Bt =−B)

Similarly, we have: (
I 0
Z I

)(
Ek,k 0

0 Ek,k

)(
I 0
0 Z

)−1

=

(
I 0
Z I

)(
Ek,k 0

0 Ek,k

)(
I 0
−Z I

)
=

(
Ek,k 0

∑
k−1
i=1 Zi,kEi,k−∑

k−1
j=1 Zk, jEk, j Ek,k

)
=

(
Ek,k 0

∑
k−1
i=1 Zi,kEi,k−∑

k−1
j=1 Z j,kEk, j Ek,k

)
which minus Bk will span any matrix in the form of:(

0 0
C 0

)
(Ct =−C)

So far we’ve proven that any matrix on the right side can be spanned by elements on the left side
together with the other direction, thus our proof is done.

Then it finally goes to our image of Johnson homomorphism for Σg.2.

Theorem 4.4. If we take the standard basis {α1,β1, · · · ,αg,βg,γ1} of π1(Σg,2,x) (see Figure 2), the
image of τ : T (Σg,2)→ Hom(H,∧2H) in the matrix form is:

{

0 A B
C At

0 D

 |∀A,B,C ∈Mg×g(Z),Bt =−B,Ct =−C,∀D ∈ ∧3H ′}

where H ′ = H/〈γ1〉= H1(Σg,1), and ∧3H ′ has a natural way of embedding in Hom(H ′,∧2H ′).
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proof of theorem: Fisrt of all, we know that for Σg,2:

Im(τ) = SpanZ{ϕ∗( fk),ϕ∗(gl)|1≤ k ≤ g,1≤ l ≤ g−1,∀ϕ ∈Mod(Σg,2)}

where fk and gl are respectively a Dehn twist about a separating curve in (a) and a bounding pair
map in (b).

Computations before and Proposition 4.3 show us:

SpanZ{ϕ∗( fk)|1≤ k ≤ g,∀ϕ ∈Mod(Σg,2)}

= {

0 A B
C At

0 0

 |∀A,B,C ∈Mg×g(Z),Bt =−B,Ct =−C} (8)

So in the next step we need to confirm that ϕ∗(gk)(1 ≤ k ≤ g− 1,∀ϕ ∈ Mod(Σg,2)) takes the
matrix form in the proposition and we have to show that any matrix in this form is truely an image.

Firstly, we just compute directly ϕ∗(gk)(1 ≤ k ≤ g− 1,∀ϕ ∈ Mod(Σg,2)) like what we did to
ϕ∗( fk), also supposing the matrix of ϕ is P with the form in Lemma 4.2 for b = 2:

ϕ∗(gk)([γ1]) = ϕ∗(gk(ϕ
−1
∗ ([γ1])) = ϕ∗(gk([γ1])) = 0

ϕ∗(gk)([ci]) =ϕ∗(gk(ϕ
−1
∗ ([ci])))

=ϕ∗(gk(
2g

∑
j=1

(P̃−1) j,i[c j]+wi
1[γ1]))

=ϕ∗(gk(
k

∑
j=1

P̃−1
j,i [α j]))+ϕ∗(gk(P̃−1

k+1,i[αk+1]))+ϕ∗(gk(
g+k

∑
j=g+1

P̃−1
j,i [β j−g]))

=
k

∑
j=1

P̃−1
j,i ϕ∗([βk+1]∧ [α j])+ P̃−1

k+1,iϕ∗(
k

∑
l=1

[αl]∧ [βl])+
g+k

∑
j=g+1

P̃−1
j,i ϕ∗([βk+1]∧ [β j−g])

=
k

∑
j=1

P̃−1
j,i (v

g+k+1
1 [γ1]+

2g

∑
m=1

P̃m,g+k+1[cm])∧ (v j
1[γ1]+

2g

∑
n=1

P̃n, j[cn])

+ P̃−1
k+1,i

k

∑
l=1

(vl
1[γ1]+

2g

∑
m=1

P̃m,l[cm])∧ (vg+l
1 [γ1]+

2g

∑
n=1

P̃n,g+l[cn])

+
g+k

∑
j=g+1

P̃−1
j,i (v

g+k+1
1 [γ1]+

2g

∑
m=1

P̃m,g+k+1[cm])∧ (v j
1[γ1]+

2g

∑
n=1

P̃n, j[cn])

The part of [cm]∧ [cn] is just the image of ϕ̃∗( f̃k) where ϕ̃ ∈Mod(Σg,1) corresponds to the matrix
P̃ ∈M2g×2g(Z) and f̃k is the image of fk under T (Σg,2)→ T (Σg,1). And Proposition 4.1 tells us
that this part lies in ∧3H ′. After we eliminate this part, all the items left have the form of a multiple
of [γ1]∧ [cn]. Denote Qi,n as the coefficient of [γ1]∧ [cn] in ϕ∗( fk(ϕ

−1
∗ ([ci]))), then we have:
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Qi,n =
k

∑
j=1

vg+k+1
1 P̃−1

j,i P̃n, j +
g+k

∑
j=g+1

vg+k+1
1 P̃−1

j,i P̃n, j

−
k

∑
j=1

v j
1P̃−1

j,i P̃n,g+k+1 +
k

∑
j=1

v j
1P̃−1

k+1,iP̃n,g+ j

−
k

∑
j=1

vg+ j
1 P̃−1

k+1,iP̃n, j−
g+k

∑
j=g+1

v j
1P̃−1

j,i P̃n,g+k+1

Remember that:

P̃ =

(
X Y
Z W

)
, P̃−1 = J−1P̃J =

(
W t −Y t

−Zt X t

)
So we can write Qi,n more specifically:
(i)For 1≤ i≤ g,1≤ n≤ g:

Qi,n =
k

∑
j=1

vg+k+1
1 (Wi, jXn, j−Zi, jYn, j)+

k

∑
j=1

v j
1(−Wi, jYn,k+1 +Wi,k+1Yn, j)

+
k

∑
j=1

vg+ j
1 (−Wi,k+1Xn, j +Zi, jYn,k+1)

(ii)For 1≤ i≤ g,g+1≤ n≤ 2g:

Qi,n =
k

∑
j=1

vg+k+1
1 (Wi, jZn−g, j−Zi, jWn−g, j)+

k

∑
j=1

v j
1(−Wi, jWn−g,k+1 +Wi,k+1Wn−g, j)

+
k

∑
j=1

vg+ j
1 (−Wi,k+1Zn−g, j +Zi, jWn−g,k+1)

(iii)For g+1≤ i≤ 2g,1≤ n≤ g:

Qi,n =
k

∑
j=1

vg+k+1
1 (−Yi−g, jXn, j +Xi−g, jYn, j)+

k

∑
j=1

v j
1(Yi−g, jYn,k+1−Yi−g,k+1Yn, j)

+
k

∑
j=1

vg+ j
1 (Yi−g,k+1Xn, j−Xi−g, jYn,k+1)

(iv)For g+1≤ i≤ 2g,g+1≤ n≤ 2g:

Qi,n =
k

∑
j=1

vg+k+1
1 (−Yi−g, jZn−g, j +Xi−g, jWn−g, j)+

k

∑
j=1

v j
1(Yi−g, jWn−g,k+1−Yi−g,k+1Wn−g, j)

+
k

∑
j=1

vg+ j
1 (Yi−g,k+1Zn−g, j−Xi−g, jWn−g,k+1)

And we can easily check that:
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1©For 1≤ i≤ g,1≤ n≤ g: Qi,n = Qn+g,i+g
2©For 1≤ i≤ g,g+1≤ n≤ 2g: Qi,n =−Qn−g,i+g
3©For g+1≤ i≤ 2g,1≤ n≤ g: Qi,n =−Qn+g,i−g

All these conditions exactly testify that ϕ∗(gk) takes the wanted matrix form.
Lastly, we only need to prove that any matrix in this pariticular form could be achieved in the

image. Since T (Σg,2)→T (Σg,1) is surjective, the following map is also surjective:0 A B
C At

0 D

 ∈ Im(τ(T (Σg,2)))→ D ∈ Im(τ(T (Σg,1)))

Thus for any D ∈ ∧3H ′, there exists an element in Im(τ(T (Σg,2))) whose matrix descends to D.
With (8) and this fact, our proposition is proved.

To describe the image in a more intrinsic way, we go back to ∧3H. Despite the fact that for
b≥ 2, ∧3H can’t be naturally embeded in Hom(H,∧2H) as the case for b = 1, there is still a natural
map from ∧3H to Hom(H,∧2H):

1. There is a natural inclusion of ∧3H into H⊗∧2H given by a∧b∧ c 7→ a⊗ (b∧ c)+b⊗ (c∧
a)+ c⊗ (a∧b).

2. There is a map from H to H∗ using the algebraic intersection pairing î(−,−): a ∈ H 7→ fa ∈
H∗ : ∀b ∈ H, fa(b) = î(b,a). So there is a map from H⊗∧2H to H∗⊗∧2H.

3. H∗⊗∧2H is canonically isomorphic to Hom(H,∧2H).

Thus we have a map φ : ∧3H → Hom(H,∧2H). For b = 2, we actually have the following
theorem describing the image of Johnson homomorphism independent of matrices.

Theorem 4.5. The image of τ : T (Σg,2)→Hom(H,∧2H) is the image of φ :∧3H→Hom(H,∧2H).

Proof of theorem. We have mentioned before that τ : T (Σg,2)→Hom(H,∧2H) is equivariant under
the action of Mod(Σg,2). It’s easy to check φ : ∧3H → Hom(H,∧2H) is also equivariant under the
action of Mod(Σg,2). Observing φ , we only need to check H→H∗ is equivariant under the action of
Mod(Σg,2). Let g ∈Mod(Σg,2) act on a ∈H, we get g.a = g∗(a). Let g ∈Mod(Σg,2) act on fa ∈H∗,
we get (g. fa)(b) = fa(g−1

∗ (b)) = î(g−1
∗ (b),a). We may as well take g = Tc where c is a simple

closed curve in Σg,2 and assume that a,b can be represented as the homology classes of simple
closed curves (use the same notation) in Σg,2.Then we have î((Tc)

−1
∗ (b),a) = î(b− î(b,c)c,a) =

î(b,a)− î(c,a)î(b,c) = î(b,a+ î(a,c)c) = î(b,(Tc)∗(a)). Thus (g. fa)(b) = î(b,g∗(a)) = fg.a(b),
which verifies the equivariance.

We still take a canonical basis {α1,β1, · · · ,αg,βg,γ1} of π1(Σg,2, x) as in Figure 2.
We need to prove two directions: Im(τ)⊂ Im(φ) and Im(φ)⊂ Im(τ).
As for Im(τ) ⊂ Im(φ), it’s sufficient to prove that τ( fk) and τ(gk) computed before in (a) and

(b) lie in the image of φ , since both τ and φ are equivariant under the action of Mod(Σg,2) and

Im(τ) = SpanZ{ϕ∗( fk),ϕ∗(gl)|1≤ k ≤ g,1≤ l ≤ g−1,∀ϕ ∈Mod(Σg,2)}
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First, for τ( fk) where fk is a Dehn twist about a separating curve shown in (a), we recall that

τ( fk)([αi]) = [γ1]∧ [αi], τ( fk)([βi]) = [γ1]∧ [βi],1≤ i≤ k

τ( fk)([c]) = 0, if c ∈ {αk+1,βk+1, · · · ,αg,βg,γ1}

We can directly compute φ([γ1]∧ [β1]∧ [α1]) as follows:

φ([γ1]∧ [α1]∧ [β1])([c]) = ( f[γ1]⊗ ([α1]∧ [β1])+ f[α1]⊗ ([β1]∧ [γ1])+ f[β1]⊗ ([γ1]∧ [α1]))([c])

= î([c], [γ1])[α1]∧ [β1]+ î([c], [α1])[β1]∧ [γ1]+ î([c], [β1])[γ1]∧ [α1]

so we have:

φ([γ1]∧ [α1]∧ [β1])([α1]) = [γ1]∧ [α1], φ([γ1]∧ [α1]∧ [β1])([β1]) = [γ1]∧ [β1]

φ([γ1]∧ [α1]∧ [β1])([c]) = 0, if c ∈ {α2,β2, · · · ,αg,βg,γ1}

Thus τ( f1) = φ([γ1]∧ [α1]∧ [β1]). By similar computation, we can get τ( fk) = φ(∑k
i=1[γ1]∧ [αi]∧

[βi]) ∈ Im(φ), 1≤ k ≤ g.
Then we recall results about τ(gk), where gk is a bounding pair map shown in (b):

τ(gk)([αi]) = [βk+1]∧ [αi], τ(gk)([βi]) = [βk+1]∧ [βi],1≤ i≤ k

τ(gk)([αk+1]) =
k

∑
i=1

[αi]∧ [βi]

τ(gk)([c]) = 0, i f c ∈ {βk+1,αk+2,βk+2, · · · ,αg,βg,γ1}

Through basic computation, we have τ(gk) = φ((∑k
i=1[αi]∧ [βi])∧ [βk+1]) ∈ Im(φ),1 ≤ k ≤ g−1.

So far, we have proven the first part.
As for Im(φ) ⊂ Im(τ), we need to show every φ(x∧ y∧ z) is in the image of τ , where x,y,z ∈

{[α1], [β1], · · · , [αg], [βg], [γ1]}.
First, from above computation, we know that φ([α1]∧ [β1]∧ [β2]) = τ(g1)∈ Im(τ). Since Im(τ)

is closed under the action of Mod(Σg,2), after we let any g ∈Mod(Σg,2) act on [α1]∧ [β1]∧ [β2], its
image under φ should still lie in the image of τ . Then we can imitate the proof of Im(τ) = ∧3H for
b = 1 in Johnson’s paper [4]. For g = 2, we apply the factor rotation [α2]→ [β2]→−[α2] (basic
elements not mentioned are assumed fixed) to [α1]∧ [β1]∧ [β2] and get φ(−[α1]∧ [β1]∧ [α2]) ∈
Im(τ). The factor swap [α1]↔ [α2], [β1]↔ [β2] applied to these two elements gives us that φ([α2]∧
[β2]∧ [beta1]),φ(−[α2]∧ [β2]∧ [α1]) ∈ Im(τ). If g ≥ 3, we apply the map [α1]→ [α1] + [β1]−
[β3], [α3]→ [α3]− [β1]+ [β3] to [α1]∧ [β1]∧ [β2], and get φ([β1]∧ [β2]∧ [β3]) ∈ Im(τ). If we apply
to the two elements [α1]∧ [β1]∧ [β2], [β1]∧ [β2]∧ [β3] maps of the type 1) [α]↔ [αi], [β1]↔ [βi], 2)
[αi]→ [βi]→−[αi], we will get all φ(x∧ y∧ z) ∈ Im(τ), where x,y,z ∈ {[α1], [β1], · · · , [αg], [βg]}.

Then what’s left to prove is that all φ([γ1]∧x∧y)∈ Im(τ), where x,y∈{[α1], [β1], · · · , [αg], [βg]}.
From above, we have known that φ([γ1]∧ [α1]∧ [β1]) = τ( f1)∈ Im(τ),φ([γ1]∧ [αi]∧ [βi]) = τ( fi)−
τ( fi−1) ∈ Im(τ),2 ≤ i ≤ g. We apply the factor mix [αi] → [αi]− [β j], [α j] → [α j]− [βi],(i 6=
j) to [γ1]∧ [αi]∧ [βi], and get φ([γ1]∧ [βi]∧ [β j]) ∈ Im(τ). Then we apply the factor rotation
[αi]→ [βi]→ −[αi] to [γ1]∧ [βi]∧ [β j], and get φ(−[γ1]∧ [αi]∧ [β j]) ∈ Im(τ). Finally we apply
[α j]→ [β j]→−[α j] to −[γ1]∧ [αi]∧ [β j] and get φ([γ1]∧ [αi]∧ [α j]) ∈ Im(τ).

Conclusively we have proven that Im(τ) = Im(φ).
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5 The Image of Johnson Homomorphism for Σg,b(b≥ 3)

We continue to compute the image for Σg,b(b ≥ 3) following basically the same framework in the
previous section. We take a marked point x in one of the boundary components of Σg,b, and a
standard basis {α1, · · · ,αg,β1, · · · ,βg,γ1,γ2, · · · ,γb−1} of π1(Σg,b,x) shown in Figure 4. We call the
boundary component whose homology class is [γi] the (i+ 1)-th boundary component. We denote
H = H1(Σg,b;Z) , H ′ = H1(Σg,1;Z), and for convenience, we denote c1 = α1,c2 = α2, · · · ,cg =
αg,cg+1 = β1, · · · ,c2g = βg. Then we can describe an element in Hom(H,∧2H) in the following
matrix form:



[γ1] . . . [γb−1] [c1] . . . [cg] [cg+1] . . . [c2g]

[γi]∧ [γ j] ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
[γ1]∧ [ci] ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
[γ2]∧ [ci] ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
... ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
[γb−1]∧ [ci] ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
[ci]∧ [c j] ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗


(C2

b−1+2g(b−1)+C2
2g)×(2g+b−1)

First we compute all images of standard Dehn twists about separating curves and bounding pair
maps:

(a) Dehn twists about separating curves

In Σg,b(b ≥ 3), there are more types of separating curves. Basically, a separating curve µ t
k

separates Σg,b into a surface homeomorphic to Σk,t+1(0 ≤ k ≤ g,0 ≤ t ≤ b− 1) and the other
surface homeomorphic to Σg−k,b−t+1, which contained the marked point x.

First, for µ0
k , it’s easy to get τ(T

µ0
k
) = 0 like before.

Second, for µ1
k , supposing this curve separates the (i+1)-th boundary component from all the

other boundary components in the figure below, we will have:

x.
 ..

. . .. . . . . .
γ
i

genus k

μk
1

Figure 6: µ1
k
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τ(T
µ1

k
)([α j]) = [γi]∧ [α j],1≤ j ≤ k

τ(T
µ1

k
)([β j]) = [γi]∧ [β j],1≤ j ≤ k

τ(T
µ1

k
)([c]) = 0, i f c ∈ {αk+1,βk+1, · · · ,αg,βg,γ1, · · · ,γb−1}

Third, for µ2
k , supposing this curve separates the (i+1)-th and the ( j+1)-th boundary compo-

nents (i < j) from all the other boundary components in the figure below, we will get:

x.
 ..

. . .. . . . . .

γi

 genus k

μk

.. .

γ

2

j

Figure 7: µ2
k

τ(T
µ2

k
)([αl]) = [γi]∧ [αl]+ [γ j]∧ [αl],1≤ l ≤ k

τ(T
µ2

k
)([βl]) = [γi]∧ [βl]+ [γ j]∧ [βl],1≤ l ≤ k

τ(T
µ2

k
)([γi] = [γ j]∧ [γi] =−[γi]∧ [γ j]

τ(T
µ2

k
)([γ j] = [γi]∧ [γ j]

τ(T
µ2

k
)([c]) = 0, i f c ∈ {αk+1,βk+1, · · · ,αg,βg,γ1, · · · , γ̂i, · · · , γ̂ j, · · · ,γb−1}

Continuing this process, we can compute the image for µm
k (1 ≤ m ≤ b− 1) which separates

the (i1 +1)-th, . . . , (im +1)-th boundary components from all the other boundariy components
(i1 < i2 < · · ·< im):

τ(Tµm
k
)([α j]) =

m

∑
l=1

[γil ]∧ [α j],1≤ j ≤ k

τ(Tµm
k
)([β j]) =

m

∑
l=1

[γil ]∧ [β j],1≤ j ≤ k

τ(Tµm
k
)([γi1 ] = ∑

l 6=1
[γil ]∧ [γi1 ]

· · ·
τ(Tµm

k
)([γim ] = ∑

l 6=m
[γil ∧ [γim ]

τ(Tµm
k
)([c]) = 0, i f c ∈ {αk+1,βk+1, · · · ,αg,βg,γ1, · · · , γ̂i1 , · · · , ˆγim , · · · ,γb−1}
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(b) Bounding pair maps

Due to the definition of bounding pair maps, any bounding pair α,β must separate Σg,b into a
surface homeomorphic to Σk,2(1≤ k≤ g−1) and a surface homeomorphic to Σg−k−1,b+2 shown
in the figure below.

x.
 ..

. . .. . . . . .

γi

genus k+1

.. .

γj

α

β

Figure 8: a bounding pair in Σg,b

Again, let gk = TαT−1
β

, we can obtain similar results:

τ(gk)([αi]) = [βk+1]∧ [αi],1≤ i≤ k

τ(gk)([βi]) = [βk+1]∧ [βi],1≤ i≤ k

τ(gk)([αk+1]) =
k

∑
i=1

[αi]∧ [βi]

τ(gk)([c]) = 0, i f c ∈ {βk+1,αk+2,βk+2, · · · ,αg,βg,γ1, · · · ,γb−1}

After observing the images of Dehn twists about separating curves and bounding pair maps in Σg,b
and letting Mod(Σg,b) act on them, we get the image for Johnson homomorphism for Σg,b(b≥ 3) in
the theorem as follows.

Theorem 5.1. If we take the standard basis {α1,β1, · · · ,αg,βg,γ1, · · · ,γb−1} of π1(Σg,b,x)(b ≥ 3)
(see figure 4), the image of τ : T (Σg,b)→ Hom(H,∧2H) in the matrix form is:

{



[γk] [cm]

[γi]∧ [γ j] EC2
b−1×(b−1) FC2

b−1×2g

[γ1]∧ [ci] 0 F1

...
...

...

[γb−1]∧ [ci] 0 Fb−1

[ci]∧ [c j] 0 D


|D,E,F,Fi(1≤ i≤ b−1)satisfy conditions beneath}

(9)

(i) D can be any element in ∧3H ′ with ∧3H ′ emdedded in Hom(H ′,∧2H ′).

(ii) F can be any matrix in MC2
b−1×2g(Z).
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(iii)

(1≤ i≤ b−1)Fi =

(
Ai Bi

Ci At
i

)
,∀Ai,Bi,Ci ∈Mg×g(Z),Bt

i =−Bi,Ct
i =−Ci.

(iv) For E,denote
〈
[γk], [γi]∧ [γ j]

〉
as the coefficient of [γi]∧ [γ j] in τ( f )([γk]) for a fixed element

f ∈ T (Σg,b), then we have:
〈
[γi]+ [γ j], [γi]∧ [γ j]

〉
=
〈
[γk], [γi]∧ [γ j]

〉
= 0,(i 6= j,k 6= i,k 6= j).

Then E could be any matrix in MC2
b−1×(b−1)(Z) satisfying the above condition.

proof of theorem: Above all, the images we have calculated in (a) and (b) actually satisfy the form
in (9). Then there are two things left for us to check. On the one hand, we should prove that after
letting any mapping class act on the standard Dehn twists about separating curves and bounding
pair maps, the images still lie in (9). On the other hand, we need to show that every element in (9)
can be realized.

First, by reviewing Lemma 4.2, for any ϕ ∈Mod(Σg,b), its corresponding matrix form could be:

P =


P̃2g×2g 0

v1
...

vb−1

Ib−1

 ,∀P̃ ∈ Sp(2g;Z),∀vi ∈M1×2g(Z),1≤ i≤ b−1

Then we examine carefully the affections of the action of ϕ .Since τ is linear, we only need to
check different parts in the matrix (9) repectively as follows:

(I) Let h1 ∈ Hom(H,∧2H) correspond to the following matrix where E satisfies the condition
(ii) in the proposition: 

EC2
b−1×(b−1) 0

0 0
...

...
0 0
0 0


Then we have:

ϕ∗(h1)([γi]) = ϕ∗(h1(ϕ
−1
∗ ([γi]))) = ϕ∗(h1([γi])) = h1([γi]),1≤ i≤ b−1

ϕ∗(h1)([ci]) = ϕ∗(h1(ϕ
−1
∗ ([ci]))) = ϕ∗(h1(

2g

∑
j=1

P̃−1
j,i [c j]+

b−1

∑
l=1

wi
l[γl])) =

b−1

∑
l=1

wi
lh1([γl]),1≤ i≤ 2g

Above computations just tell us ϕ∗(h1) is still in (9).

(II) Let h2 ∈ Hom(H,∧2H) correspond to the following matrix where F is arbitrary :
0 FC2

b−1×2g

0 0
...

...
0 0
0 0


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Then we have:

ϕ∗(h2)([γi]) = ϕ∗(h2(ϕ
−1
∗ ([γi]))) = ϕ∗(h2([γi])) = 0,1≤ i≤ b−1

ϕ∗(h2)([ci]) = ϕ∗(h2(ϕ
−1
∗ ([ci]))) = ϕ∗(h2(

2g

∑
j=1

P̃−1
j,i [c j]+

b−1

∑
l=1

wi
l[γl]))

=
2g

∑
j=1

P̃−1
j,i ϕ∗(h1([c j])) =

2g

∑
j=1

P̃−1
j,i h1([c j]),1≤ i≤ 2g

This shows that ϕ∗(h2) lies in (9).

(III) Let fi ∈ Hom(H,∧2H)(1≤ i≤ b−1) correspond to the following matrix where Fi satisfies
the condition (iii) in the proposition: 

0 0
0 0
...

...
0 Fi
...

...
0 0
0 0


Then we have:

ϕ∗( fi)([γ j]) = ϕ∗( fi(ϕ
−1
∗ ([γ j]))) = ϕ∗( fi([γ j])) = 0,1≤ j ≤ b−1

ϕ∗( fi)([c j]) = ϕ∗( fi(ϕ
−1
∗ ([c j]))) = ϕ∗( fi(

2g

∑
l=1

P̃−1
l, j [cl]+

b−1

∑
l=1

w j
l [γl])) =

2g

∑
l=1

P̃−1
l, j ϕ∗( fi([cl]))

=
2g

∑
l=1

P̃−1
l, j ϕ∗(

2g

∑
k=1

(Fi)k,l[γi]∧ [ck]) =
2g

∑
l=1

2g

∑
k=1

P̃−1
l, j (Fi)k,l[γi]∧ϕ∗([ck])

=
2g

∑
l=1

2g

∑
k=1

P̃−1
l, j (Fi)k,l[γi]∧ (

2g

∑
m=1

P̃m,k[cm]+
b−1

∑
m=1

vk
m[γm])

=
2g

∑
l=1

2g

∑
k=1

2g

∑
m=1

P̃−1
l, j (Fi)k,lP̃m,k[γi]∧ [cm]+

2g

∑
l=1

2g

∑
k=1

b−1

∑
m=1

P̃−1
l, j (Fi)k,lvk

m[γi]∧ [γm],1≤ j ≤ 2g

Then the matrix of ϕ∗( fi) is: 

0 *
0 0
...

...
0 P̃FiP̃−1

...
...

0 0
0 0


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And from Proposition 4.3 we know that P̃FiP̃−1 still satisfies condition (iii), thus ϕ∗( fi) lies
in (9).

(IV) Let gk be the bounding pair map in (b), and we know the matrix corresponding to ϕ−1 is:

P−1 =


P̃−1 0
w1
...

wb−1

Ib−1


Then we have:

ϕ∗(gk)([γi]) = ϕ∗(gk(ϕ
−1
∗ ([γi]))) = ϕ∗(gk([γi])) = 0,1≤ i≤ b−1

ϕ∗(gk)([ci]) = ϕ∗(gk(ϕ
−1
∗ ([ci]))) = ϕ∗(gk(

2g

∑
j=1

(P̃−1) j,i[c j]+
b−1

∑
j=1

wi
j[γ j]))

=ϕ∗(gk(
k

∑
j=1

P̃−1
j,i [α j]))+ϕ∗(gk(P̃−1

k+1,i[αk+1]))+ϕ∗(gk(
g+k

∑
j=g+1

P̃−1
j,i [β j−g]))

=
k

∑
j=1

P̃−1
j,i ϕ∗([βk+1]∧ [α j])+ P̃−1

k+1,iϕ∗(
k

∑
l=1

[βl]∧ [αl])+
g+k

∑
j=g+1

P̃−1
j,i ϕ∗([βk+1]∧ [β j−g])

=
k

∑
j=1

P̃−1
j,i (

b−1

∑
m=1

vg+k+1
m [γm]+

2g

∑
m=1

P̃m,g+k+1[cm])∧ (
b−1

∑
n=1

v j
n[γn]+

2g

∑
n=1

P̃n, j[cn])

+ P̃−1
k+1,i

k

∑
l=1

(
b−1

∑
m=1

vl
m[γm]+

2g

∑
m=1

P̃m,l[cm])∧ (
b−1

∑
n=1

vg+l
n [γn]+

2g

∑
n=1

P̃n,g+l[cn])

+
g+k

∑
j=g+1

P̃−1
j,i (

b−1

∑
m=1

vg+k+1
m [γm]+

2g

∑
m=1

P̃m,g+k+1[cm])∧ (
b−1

∑
n=1

v j
n[γn]+

2g

∑
n=1

P̃n, j[cn]),1≤ i≤ 2g

The part of [γm]∧ [γn] can be neglected since its coefficient can be arbitrary; the part of [cm]∧
[cn] is just the image of ϕ̃∗( f̃k) where ϕ̃ ∈Mod(Σg,1) corresponds to the matrix P̃∈M2g×2g(Z)
and f̃k is the image of fk under T (Σg,b)→ T (Σg,b−1)→ ··· → T (Σg,1). And Proposition
4.1 tells us that this part lies in ∧3H ′; the last part is a multiple of [γm]∧ [cn]. Denote Qm

i,n as
the coefficient of [γm]∧ [cn] in ϕ∗( fk(ϕ

−1
∗ ([ci]))), then we have:

Qm
i,n =

k

∑
j=1

vg+k+1
m P̃−1

j,i P̃n, j +
g+k

∑
j=g+1

vg+k+1
m P̃−1

j,i P̃n, j

−
k

∑
j=1

v j
mP̃−1

j,i P̃n,g+k+1 +
k

∑
j=1

v j
mP̃−1

k+1,iP̃n,g+ j

−
k

∑
j=1

vg+ j
m P̃−1

k+1,iP̃n, j−
g+k

∑
j=g+1

v j
mP̃−1

j,i P̃n,g+k+1

Then in the same way in section 4, we can prove that for each fixed m(1 ≤ m ≤ b− 1), the
correponding matrix satisfies condition (iii).
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So far, through (I)(II)(III)(IV), we’ve proven that the images obtained by letting any mapping
class act on Dehn twists about separating curves and bounding pair maps are truly in (9), namely
τ(T (Σg,b)) is a subset of (9). Then we continue to prove that any element in 9 can be realized as
an image.

Firstly, for the separating curve µ1
k in (a) that separates the (i+1)-th boundary component from

others (1≤ i≤ b−1), and for ϕ ∈Mod(Σg,b) whose corresponding matrix is:

P =



P̃ 0
0
...
vi
...
0

Ib−1


,∀P̃ ∈ Sp(2g;Z),∀vi ∈M1×2g(Z)

Then similar to the process for b = 2, we find that ϕ∗(µ
1
k ) (for fixed i) spans:

0 0
0 0
...

...
0 Fi
...

...
0 0
0 0


,Fi =

(
Ai Bi

Ci At
i

)
,∀Ai,Bi,Ci ∈Mg×g(Z),Bt

i =−Bi,Ct
i =−Ci.

Secondly, for the separating curve µ2
0 in ((a)) that separates the (i+ 1)-th and the ( j + 1)-th

boundary components (i < j) from all other boundary components and separates Σg,b into a surface
homeomorphic to Σ0,3 and the other surface homeomorphic to Σg,b−1. Then we have:

τ(T
µ2

0
)([γi]) =−[γi]∧ [γ j]

τ(T
µ2

0
)([γ j] = [γi]∧ [γ j]

τ(T
µ2

0
)([c]) = 0, i f c ∈ {α1,β1, · · · ,αg,βg,γ1, · · · , γ̂i, · · · , γ̂ j, · · · ,γb−1}

Since here i and j could be any intergers in {1,2, . . . ,b−1} with (i < j),then it will span:
EC2

b−1×(b−1) 0
0 0
...

...
0 0
0 0

 ,any E satisfies condition(iv)
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Thirdly, let any ϕ ∈Mod(Σg,b) act on T
µ2

0
above, then:

ϕ∗(Tµ2
0
)([γi]) = ϕ∗(Tµ2

0
(ϕ−1
∗ ([γi]))) = ϕ∗(Tµ2

0
([γi])) = ϕ∗(−[γi]∧ [γ j]) =−[γi]∧ [γ j]

ϕ∗(Tµ2
0
)([γ j]) = ϕ∗(Tµ2

0
(ϕ−1
∗ ([γ j]))) = ϕ∗(Tµ2

0
([γ j])) = ϕ∗([γi]∧ [γ j]) = [γi]∧ [γ j]

ϕ∗(Tµ2
0
)([γl]) = ϕ∗(Tµ2

0
(ϕ−1
∗ ([γl]))) = ϕ∗(Tµ2

0
([γl])) = 0,1≤ l ≤ b−1, l 6= i, l 6= j

ϕ∗(Tµ2
0
)([ck]) = ϕ∗(Tµ2

0
(ϕ−1
∗ ([ck]))) = ϕ∗(Tµ2

0
(

2g

∑
j=1

P̃−1
j,k [c j]+

b−1

∑
l=1

wk
l [γl]))

= ϕ∗(wk
i T

µ2
0
([γi])+wk

jTµ2
0
([γ j])) = (wk

j−wk
i )[γi]∧ [γ j],1≤ l ≤ 2g

Then the matrix of ϕ∗(Tµ2
0
)−T

µ2
0

becomes:

0

0
...

w j−wi
...
0

0 0
...

...
0 0
0 0


Here wi and w j are arbitrary vectors since vl(1≤ l ≤ b−1) is from Lemma 4.2, thus it will span:

0 FC2
b−1×2g

0 0
...

...
0 0
0 0

 ,F is arbitrary

Fourthly and lastly, since T (Σg,b)→ T (Σg,b−1)→ ··· → T (Σg,1) are all surjective, so D in
the proposition could be any element in ∧3H ′. Thus finally we can say any element in (9) can be
realized, then our proof is done.

Remark 5.2. So far we have computed out the images of Johnson homomorphism for all compact
surfaces, but especially we describe the images by choosing a special basis of π1(Σg,b) and taking
the matrix form. We are still looking forward to finding a more intrinsic description.

6 A special case for surfaces of infinte type

In this section, we try to compute the image of Johnson homomorphism for a special surface of
infinite topological type in the following Figure 9. Before that, we have to know some basics of
surfaces of infinite type.
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A surface Σ of infinite type is a connected oriented surface whose fundamental group is not
finitely generated. And according to [10], the homoeomorphism type of Σ of infinite type is deter-
mined by the tuple:

(g(Σ),b(Σ),Ends(Σ),Endsg(Σ))

where g(Σ) is the genus of Σ; b(Σ) is the number of boundary components of Σ; Ends(Σ) is the
space of ends of Σ which is defined as Ends(Σ) = lim

←−
π0(Σ\K) where the inverse limit is taken

over the set of compact subsets K ⊂ Σ directed with repect to inclusion; Endsg(Σ) is the subset of
Ends(Σ) consisting of ends accumulated by genus, where we say e ∈ Ends(Σ) is accumulated by
genus if every neighborhood of e has infinite genus. Then our surface in figure 10 correponds to the
tuple: (+∞,1,{e},{e}).
For a surface Σ, we could also define its mapping class group, which is usually called a big mapping
class group:

Mod(Σ) = Homeo(Σ,∂Σ)\Homeo0(Σ,∂Σ)

where Homeo(Σ,∂Σ) is the group of self homeomorphisms of σ which fixes ∂Σ pointwise, and
Homeo0(Σ,∂Σ) is the connected component of the identity in Homeo(Σ,∂Σ). As for the topology,
after equipping Homeo(Σ,∂Σ) with the compact-open topology, Mod(Σ) is then equipped with the
quotient topology naturally. We denote this topology as τq and PMod(Σ) is the pure mapping class
group whose elements act trivially on Ends(Σ) with the subspace topology. The following is a part
of Proposition 6.2 in [7]:

Proposition 6.1 (P.P&N.G.V). If Σ has at most one end accumulated by genus, the set of Dehn
twists topologically generates (PMod(Σ),τq).

Notice there’s a difference between generating and topologically generating.
We care about the Torelli group of Σ which is also difined as:

T (Σ) := Ker of (Mod(Σ)→ Aut(H1(Σ;Z)) )

Then T (Σ) < PMod(Σ) is equipped with the subspace topology. And we denote by T c(Σ) the
subgroup of T (Σ) consisting of elements with compact surports, and let T c(Σ) be the closure of
T (Σ) in PMod(Σ). Then there follows an important theorem from [3].

Theorem 6.2 (J.A,T.G,· · · ). For any connectd oriented surface Σ of infinite type, we have T (Σ) =
T c(Σ).

In the following text, we care about surfaces of infinite type with b(Σ) ≥ 1 so that Σ has at least
one fixed point x. And through a similar procedure in section 3, we could define the Johnson
homomorphism for Σ of infinite type ( the only difference from finite cases is that π1(Σ,x) is now a
free group with infinite generators):

τ : T (Σ)→ Hom(H1(Σ;Z),∧2H1(Σ;Z))

Lemma 6.3. If Hom(H1(Σ;Z),∧2H1(Σ;Z)) is equipped with the compact-open topology, then the
Johnson homomorphism τ is continuous.
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proof of lemma: The Johnson homomorphism can be separated into two steps:

τ1 : T (Σ)→ Aut(π1(Σ,x))

τ2 : Aut(π1(Σ,x))→ Hom(H1(Σ;Z),∧2H1(Σ;Z))
f 7→ (y→ f (y)y−1)

Here τ = τ2 ◦ τ1 and the topology of Aut(π1(Σ,x)) is also the compact-open topology, so we only
need to prove τ1 and τ2 are continuous.

For τ1, suppose gn converges to g in T (Σ). For any y ∈ π1(Σ,x) that can be represented by
a simple closed curve, τ1(g)(y) also can be represented by a simple closed curve. Then we take
U ⊂ Σ to be the curve corresponding to y, and take V ⊂ Σ to be the regular neighborhood of the
curve corresponding to τ1(g)(y). Since it’s evident that U is compact and V is open, there exists
an integer N such that ∀n > N, gn maps U into V , so τ1(gn) maps y into τ1(g)(y), namely τ1(gn)
converges to τ1(g) in Aut(π1(Σ,x)). Thus τ1 is continuous.

For τ2, if fn converges to f in Aut(π(Σ,x)), it means that for any y ∈ π1(Σ,x), there exists a
large enough integer N such that ∀n > N, we have fn(y) = f (y), which directly shows that τ2( fn)
converges to τ2( f ). So τ2 is continuous.

From above, we prove that τ is a continuous map.

Use the above lemma, the following corollary is an easy exercise.

Corollary 6.4. τ(T (Σ))⊂
⋃

Σc⊂Σ

τ(T (Σc)), where Σc is any compact subsurface of Σ.

proof of corollary: First, from Theorem 6.3, we have: T (Σ) =
⋃

Σc⊂Σ

T (Σc).

Since τ is continuous due to Lemma 6.4, we have:

τ(T (Σ)) = τ(
⋃

Σc⊂Σ

T (Σc))⊂ τ(
⋃

Σc⊂Σ

T (Σc)) =
⋃

Σc⊂Σ

τ(T (Σc))

. . .
γ1 γ2 γ3

x

∑ 1 ∑ ∑
2 3

α
1

β1

α

β2

2γ

Figure 9: a special surface of infinite type

Now, for our special surface Σ in figure 10. Denote respectively by Σ1,Σ2, · · · ,Σn the surfaces
obtained by cutting off the first 1,2, · · · ,n genus, and denote the boundary of Σn as γn. We can see

that Σn is homeomorphic to Σn,2, and Corollary 6.4 tells us that τ(T (Σ)) =
+∞⋃
n=1

τ(T (Σn)). Now

take a standard basis {γ,α1,β1,α2,β2, · · ·} of π1(Σ,x). Then {γ,α1,β1, · · · ,αn,βn} is a basis of
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π1(Σ
n,x), and in H1(Σ) we have [γ] = [γ1] = [γ2] = · · · = [γn] = · · · . Also, the basis of H1(Σ;Z) is

{[γ], [α1], [β1], [α2], [β2], · · ·}.
Using these facts, we could calculate the image of Johnson homomorphism for Σ as follows.

But since the generators of π1(Σ,x) are infinite, we aviod using matrix to describe the images, but
use conditions satisefied by all coefficients instead.

Theorem 6.5. Σ is the surface in figure 10, {γ,α1,β1,α2,β2, · · ·} is a standard basis of π1(Σ,x).
Then τ(T (Σ)) is the subset of Hom(H1(Σ;Z),∧2H1(Σ;Z)) satisfying the following conditions:

(i) Any f ∈ τ(T (Σ)), f ([γ]) = 0.

(ii) For f ∈ Hom(H1(Σ;Z),∧2H1(Σ;Z)), denote by A j,i the coefficient of [γ]∧ [α j] in f ([αi]);
denote by B j,i the coefficient of [γ]∧ [α j] in f ([βi]); denote by C j,i the coefficient of [γ]∧ [β j]
in f ([αi]); denote by D j,i the coefficient of [γ]∧ [β j] in f ([βi]). Then f ∈ τ(T (Σ)) satisfies:

A j,i = Di, j;B j,i =−Bi, j;C j,i =−Ci, j(∀i≥ 1, j ≥ 1)

as well as for any fixed integer i, there are finite nonzero numbers in {Ai, j,Bi, j,Ci, j,Di, j,A j,i,B j,i,C j,i,
D j,i|∀ j ∈ N}.

(iii) For convenience, denote c1 = α1,c2 = β1,c3 = α2,c4 = β2, · · · . In H1(Σ
n;Z)∼= H1(Σ

n;Z)∗, if
we denote ˆ[ck] as the dual of [ck], we know that [αk] maps to ˆ[βk] and [βk] maps to − ˆ[αk] in
this isomorphism. Then f ∈ τ(T (Σ)) satisfies: If the coefficient of [c j]∧ [γk] in f ( ˆ[ci]) is m,
the coefficient of [ck]∧ [γi] in f ( ˆ[c j]) must be m and the coefficient of [ci]∧ [γ j] in f ( ˆ[ck]) must
be m; Also for any fixed integer i, there are finitely many nonzero terms of [c j]∧ [ck] in f ([ci]),
and for any fixed integers j < k, there are finitely many integers i such that f ([ci]) contains
nonzero [c j]∧ [ck].

proof of theorem: On the one hand, we need to prove that for any g ∈ T (Σ), τ(g) satisfies these
three conditions.

First, it’s easy to see that τ(g)([γ]) = 0 since g∗(γ) = γ in π1(Σ).
Second, we have shown in section 4, any element in τ(T (Σn) satisfies the condition:

A j,i = Di, j;B j,i =−Bi, j;C j,i =−Ci, j(∀i≥ 1, j ≥ 1)

since here A = Dt ,Bt =−B,Ct =−C for the first n rows and first n columns, while the other entries
are zero. And since X = { f ∈ Hom(H1(Σ;Z),∧2H1(Σ;Z))|A j,i = Di, j;B j,i =−Bi, j;C j,i =−Ci, j} is
a closed subset of Hom(H1(Σ;Z),∧2H1(Σ;Z)), and we have learned that ∀n ∈ N,τ(T (Σn)) ⊂ X .

Knowing that τ(T (Σ))⊂
+∞⋃
n=1

τ(T (Σn)), we see τ(T (Σ))⊂ X . Besides, for any fixed integer i, it’s

natural that there are only finite nonzero numbers in {A j,i,B j,i,C j,i,D j,i|∀ j ∈Z} due to the definition
of τ . Using this fact and the properties satisfies by Ai, j,Bi, j,Ci, j,Di, j, there are also finitely many
nonzero numbers in {Ai, j,Bi, j,Ci, j,Di, j|∀ j ∈ Z}.

Third, we know that for any f ∈ τ(T (Σn)), if f ( ˆ[ci]) contains a m[c j]∧ [ck], since this part
in its image should lie in ∧3H1(Σn,1;Z), there must be a m[ci]∧ [c j]∧ [ck] ∈ ∧3H1(Σn,1;Z) where
∧3H1(Σn,1;Z) embeds in Hom(H1(Σn,1;Z),∧2H1(Σn,1;Z)) by mapping a∧b∧c to â⊗ (b∧c)+ b̂⊗
(c∧ a)+ ĉ⊗ (a∧ b), so there must be a m[ck]∧ [ci] in f ( ˆ[c j]) and a m[ci]∧ [c j] in f ( ˆ[ck]). So any
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element in τ(T (Σn)) satisfies the first part of condition (iii), and similarly elements satisfying this

condition make up a closed subset of Hom(H1(Σ;Z),∧2H1(Σ;Z)), thus τ(T (Σ)) ⊂
+∞⋃
n=1

τ(T (Σn))

also satisfies this condition. Also, it’s natural for a fixed integer i, there are finitely many nonzero
terms of [c j]∧ [ck] in f ([ci]). Due to the fact that there must be finitely many nonzero [ci]∧ [c j]∧ [ck]
in the image, we see that for any fixed integers j < k, there are finitely many integers i such that
f ([ci]) contains nonzero [c j]∧ [ck].

On the other hand, we have to show that any f ∈ Hom(H1(Σ;Z),∧2H1(Σ;Z)) satisfying the
three conditions in the proposition could be realized as the image of some g ∈T (Σ). We construct
g in the following way:

First construct f1 ∈ Hom(H1(Σ;Z),∧2H1(Σ;Z)), if we denote by (Ai, j) f ,(Bi, j) f ,(Ci, j) f ,(Di, j) f

the coefficients for f with the meaning the same as condition (ii), and (Ai, j) f1 ,(Bi, j) f1 ,(Ci, j) f1 ,(Di, j) f1

are coefficients for f1. We define:

∀i ∈ N,(A1,i) f1 = (A1,i) f ,(Ai,1) f1 = (Ai,1) f

∀i ∈ N,(B1,i) f1 = (B1,i) f ,(Bi,1) f1 = (Bi,1) f

∀i ∈ N,(C1,i) f1 = (C1,i) f ,(Ci,1) f1 = (Ci,1) f

∀i ∈ N,(D1,i) f1 = (D1,i) f ,(Di,1) f1 = (Di,1) f

∀ j 6= 1,k 6= 1,(A j,k) f1 = (B j,k) f1 = (C j,k) f1 = (D j,k) f1 = 0

There are finitely many nonzero numbers in {(A1,i) f ,(Ai,1) f ,(B1,i) f ,(Bi,1) f ,(C1,i) f ,(Ci,1) f ,(D1,i) f ,
(Di,1) f |∀i∈N} since f satisfies condition(ii), thus there are finite nonzero numbers in {(Ai, j) f1 ,(Bi, j) f1 ,
(Ci, j) f1 ,(Di, j) f1 |∀i, j ∈ N}. Also, supposing the part of f in ∧3H(Σ;Z) containing α1 and β1 is

t
∑

i=1
ai[α1]∧ [β1]∧ [cki ]+∑

i, j
bi, j[α1]∧ [cmi ]∧ [cn, j]+∑

i, j
ci, j[β1]∧ [cri ]∧ [cs j ] where all ki,mi,n j,ri,s j are

not 1 or 2 and there are finite nonzero ai,bi, j,ci, j. And we just define the part of f1 in ∧3H(Σ;Z)
with this term. That’s to say:

f1([α1]) = ∑
i
(Ai,1) f [γ]∧ [αi]+∑

i
(Ci,1) f [γ]∧ [βi]+∑

i
ai[α1]∧ [cki ]+∑

i, j
ci, j[cs j ]∧ [cri ]

f1([β1]) = ∑
i
(Bi,1) f [γ]∧ [αi]+∑

i
(Di,1) f [γ]∧ [βi]+∑

i
ai[β1]∧ [cki ]+∑

i, j
bi, j[cmi ]∧ [cn j ]

For l ≥ 1, f1([c2l+1]) = (A1,l+1) f [γ]∧ [α1]+ (C1,l+1) f [γ]∧ [β1]+∑
i

δ
ki
2l+2ai[β1]∧ [α1]+

∑
i, j
(δ mi

2l+2bi, j[α1]∧ [cn, j]+δ
n j
2l+2bi, j[cm, j]∧ [α1])+∑

i, j
(δ ri

2l+2ci, j[β1]∧ [cs, j]+δ
s j
2l+2ci, j[cr, j]∧ [β1])

For l ≥ 2, f1([c2l]) = (B1,l) f [γ]∧ [α1]+ (D1,l) f [γ]∧ [β1]+∑
i

δ
ki
2l−1ai[α1]∧ [β1]+

∑
i, j
(δ mi

2l−1bi, j[cn, j]∧ [α1]+δ
n j
2l−1bi, j[α1])∧ [cm, j]+∑

i, j
(δ ri

2l−1ci, j[cs, j]∧ [β1]+δ
s j
2l−1ci, j[β1]∧ [cr, j])

So we see that f1 can be retricted in a finite matrix and it satisfies the form in Proposition 4.4, thus
f1 is the image of some g1 ∈T (Σn1) for some n1 ∈ N.

Then we construct f2 ∈ Hom(H1(Σ;Z),∧2H1(Σ;Z)) as follows:
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∀i≥ 2,(A2,i) f2 = (A2,i) f ,(Ai,2) f2 = (Ai,2) f

∀i≥ 2,(B2,i) f2 = (B2,i) f ,(Bi,2) f2 = (Bi,2) f

∀i≥ 2,(C2,i) f2 = (C2,i) f ,(Ci,2) f2 = (Ci,2) f

∀i≥ 2,(D2,i) f2 = (D2,i) f ,(Di,2) f2 = (Di,2) f

Foe all other ( j,k),(A j,k) f2 = (B j,k) f2 = (C j,k) f2 = (D j,k) f2 = 0

And likely we assign the part of f in ∧3H(Σ;Z) containing α2 and β2 but not containing α1 and
β1 to f2. Thus we can find g2 ∈T (Σn2) for some n2 ∈ N such that τ(g2) = f2.

Inductively, we could define fk ∈Hom(H1(Σ;Z),∧2H1(Σ;Z)) and there is gk ∈T (Σnk) for some
nk ∈ N such that τ(gk) = fk.

From our constuctions, we can observe that f2 preseves [α1] and [β1] and does not map other
curves to them, so actually we could realize g2 ∈ T (Σn2\Σ1). Also, for ∀k ∈ N, fk preserves
[α1], [β1], · · · , [αk−1], [βk−1] and no other curves are mapped to them, so gk can be realized in
T (Σnk\Σk−1).

Finally, we define g̃n = g1 ·g2 · · ·gn,and define f̃n = ∑
n
i=1 fi. First we see that g2g3 · · ·gn acts triv-

ially on Σ1, and fk+1 fk+2 · · · fn acts trivially on Σk. This means that for any Σk ⊂ Σ, there exists an
integer N = k, for any m,n > N, g̃m|Σk = g̃n|Σk , which is exactly what is meant by g̃n converges in the
compact-open topology. Thus we can assume g̃n converges to g ∈ T (Σ). And from the construc-
tions, we know that f̃1([α1]) = f ([α1]), f̃1([β1]) = f ([β1]), moreover, f̃k([αi]) = f ([αi]), f̃k([βi]) =
f ([βi])(∀1≤ i≤ k). So f̃n converges to f in Hom(H1(Σ;Z),∧2H1(Σ;Z)) equipped with the compact-
open topology. Last, since τ(g̃n) = τ(g1g2 · · ·gn) = f1 + f2 + · · ·+ fn = f̃n and τ is continuous, we
get τ(g) = f after taking limits on both sides. Thus f is truly in the image of Johnson homomor-
phism.

Now our images are completely computed out and well proved.

For surfaces of infinite type, we just compute a simplest one while other cases could be a lot
different and more complex. It’s still an interesting problem how to compute the images of Johnson
homomorphism for more kinds of surfaces of infinite type and try to conclude a systematic way to
do that.
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